Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Front Public Health ; 11: 1015969, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2231124

RESUMEN

Background: Precise public health and clinical interventions for the COVID-19 pandemic has spurred a global rush on SARS-CoV-2 variant tracking, but current approaches to variant tracking are challenged by the flood of viral genome sequences leading to a loss of timeliness, accuracy, and reliability. Here, we devised a new co-mutation network framework, aiming to tackle these difficulties in variant surveillance. Methods: To avoid simultaneous input and modeling of the whole large-scale data, we dynamically investigate the nucleotide covarying pattern of weekly sequences. The community detection algorithm is applied to a co-occurring genomic alteration network constructed from mutation corpora of weekly collected data. Co-mutation communities are identified, extracted, and characterized as variant markers. They contribute to the creation and weekly updates of a community-based variant dictionary tree representing SARS-CoV-2 evolution, where highly similar ones between weeks have been merged to represent the same variants. Emerging communities imply the presence of novel viral variants or new branches of existing variants. This process was benchmarked with worldwide GISAID data and validated using national level data from six COVID-19 hotspot countries. Results: A total of 235 co-mutation communities were identified after a 120 weeks' investigation of worldwide sequence data, from March 2020 to mid-June 2022. The dictionary tree progressively developed from these communities perfectly recorded the time course of SARS-CoV-2 branching, coinciding with GISAID clades. The time-varying prevalence of these communities in the viral population showed a good match with the emergence and circulation of the variants they represented. All these benchmark results not only exhibited the methodology features but also demonstrated high efficiency in detection of the pandemic variants. When it was applied to regional variant surveillance, our method displayed significantly earlier identification of feature communities of major WHO-named SARS-CoV-2 variants in contrast with Pangolin's monitoring. Conclusion: An efficient genomic surveillance framework built from weekly co-mutation networks and a dynamic community-based variant dictionary tree enables early detection and continuous investigation of SARS-CoV-2 variants overcoming genomic data flood, aiding in the response to the COVID-19 pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiología , Pandemias , Reproducibilidad de los Resultados , Mutación
2.
Front Microbiol ; 13: 859241, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1775715

RESUMEN

Early detection of SARS-CoV-2 variants enables timely tracking of clinically important strains in order to inform the public health response. Current subtype-based variant surveillance depending on prior subtype assignment according to lag features and their continuous risk assessment may delay this process. We proposed a weighted network framework to model the frequency trajectories of mutations (FTMs) for SARS-CoV-2 variant tracing, without requiring prior subtype assignment. This framework modularizes the FTMs and conglomerates synchronous FTMs together to represent the variants. It also generates module clusters to unveil the epidemic stages and their contemporaneous variants. Eventually, the module-based variants are assessed by phylogenetic tree through sub-sampling to facilitate communication and control of the epidemic. This process was benchmarked using worldwide GISAID data, which not only demonstrated all the methodology features but also showed the module-based variant identification had highly specific and sensitive mapping with the global phylogenetic tree. When applying this process to regional data like India and South Africa for SARS-CoV-2 variant surveillance, the approach clearly elucidated the national dispersal history of the viral variants and their co-circulation pattern, and provided much earlier warning of Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529). In summary, our work showed that the weighted network modeling of FTMs enables us to rapidly and easily track down SARS-CoV-2 variants overcoming prior viral subtyping with lag features, accelerating the understanding and surveillance of COVID-19.

3.
BMC Infect Dis ; 21(1): 820, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1477273

RESUMEN

BACKGROUND: To fight against COVID-19, many policymakers are wavering on stricter public health interventions. Examining the different strategies both in and out of China's Hubei province, which contained the epidemic in late February 2020, could yield valuable guidance for the management of future pandemics. This study assessed the response process and estimated the time-varying effects of the Hubei control strategy. Analysis of these strategies provides insights for the design and implementation of future policy interventions. METHODS: We retrospectively compared the spread and control of COVID-19 between China's Hubei (excluding Wuhan) and non-Hubei areas using data that includes case reports, human mobility, and public health interventions from 1 January to 29 February 2020. Static and dynamic risk assessment models were developed to statistically investigate the effects of the Hubei control strategy on the virus case growth after adjusting importation risk and policy response timing with the non-Hubei strategy as a control. RESULTS: The analysis detected much higher but differential importation risk in Hubei. The response timing largely coincided with the importation risk in non-Hubei areas, but Hubei areas showed an opposite pattern. Rather than a specific intervention assessment, a comprehensive comparison showed that the Hubei control strategy implemented severe interventions characterized by unprecedentedly strict and 'monitored' self-quarantine at home, while the non-Hubei strategy included physical distancing measures to reduce contact among individuals within or between populations. In contrast with the non-Hubei control strategy, the Hubei strategy showed a much higher, non-linear and gradually diminishing protective effect with at least 3 times fewer cases. CONCLUSIONS: A risk-based control strategy was crucial to the design of an effective response to the COVID-19 outbreak. Our study demonstrates that the stricter Hubei strategy achieves a stronger controlling effect compared to other strategies. These findings highlight the health benefits and policy impacts of precise and differentiated strategies informed by constant monitoring of outbreak risk.


Asunto(s)
COVID-19/prevención & control , Pandemias/prevención & control , COVID-19/epidemiología , China/epidemiología , Humanos , Estudios Retrospectivos , SARS-CoV-2
4.
J Trop Pediatr ; 67(3)2021 07 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1361802

RESUMEN

A 16-month-old boy was admitted with cough for 2 days and fever for 1 day. Chest computed tomography (CT) scan of the child revealed large areas of ground-glass opacities in both lungs. Nucleic acid amplification tests (NAATs) were performed repeatedly to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the results were all negative. On day 13 of hospitalization, no clinical symptoms except diarrhea were present in the patient, and re-examination by chest CT revealed lesion shrinkage, but the NAAT on throat swabs was positive. On day 22 of hospitalization, the NAAT on throat swabs was negative and the fecal samples were positive. Positive fecal samples nucleic acid lasted for 62 days. Suggesting that pediatric patients may be important sources of infection during the recovery phase of clinical symptoms and whether SARS-CoV-2 has fecal-oral transmission needs further study.


Asunto(s)
COVID-19 , Niño , China , Tos , Fiebre , Humanos , Lactante , Pulmón , Masculino , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA